Summary of Tangents, Linearizations, and Differentials in Various Dimensions

In two dimensions, a linear equation is $A x+B y=C$. Its graph is a line. If the line is nonvertical (i.e., if B is nonzero), it may be written is point-slope form, $y=m\left(x-x_{0}\right)+y_{0}$.

In three dimensions, a linear equation is $A x+B y+C z=D$. Its graph is a plane. If the plane is nonvertical (i.e., if C is nonzero), it may be written is point-slope form, $z=m_{1}\left(x-x_{0}\right)+m_{2}\left(y-y_{0}\right)+z_{0}$.

In four dimensions, a linear equation is $A x+B y+C z+D w=E$. Its graph is a hyper-plane. If the hyper-plane is nonvertical (i.e., if D is nonzero), it may be written is point-slope form, $w=m_{1}\left(x-x_{0}\right)+m_{2}\left(y-y_{0}\right)+m_{3}\left(z-z_{0}\right)+w_{0}$.

A real-valued function with a one-dimensional domain, $y=f(x)$, has a two-dimensional graph (i.e., a curve). Let $y_{0}=f\left(x_{0}\right)$. The tangent line at the point $\left(x_{0}, y_{0}\right)$ is $y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+y_{0}$.

A real-valued function with a two-dimensional domain, $z=f(x, y)$, has a three-dimensional graph (i.e., a surface). Let $z_{0}=f\left(x_{0}, y_{0}\right)$. The tangent plane at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is $z=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+z_{0}$.

A real-valued function with a three-dimensional domain, $w=f(x, y, z)$, has a four-dimensional graph (i.e., a hyper-surface). Let $w_{0}=f\left(x_{0}, y_{0}, z_{0}\right)$. The tangent hyper-plane at the point $\left(x_{0}, y_{0}, z_{0}, w_{0}\right)$ is $w=f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)+w_{0}$.

For $y=f(x)$, the linearization at x_{0} is $L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+y_{0}$. $\Delta f \approx \Delta L=d f=d y=f^{\prime}\left(x_{0}\right) d x$.

For $z=f(x, y)$, the linearization at $\left(x_{0}, y_{0}\right)$ is $L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+z_{0}$. $\Delta f \approx \Delta L=d f=d z=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y=\nabla f\left(x_{0}, y_{0}\right) \cdot\langle d x, d y\rangle$

For $w=f(x, y, z)$, the linearization at $\left(x_{0}, y_{0}, z_{0}\right)$ is
$L(x, y, z)=f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)+w_{0}$.
$\Delta f \approx \Delta L=d f=d w=f_{x}\left(x_{0}, y_{0}, z_{0}\right) d x+f_{y}\left(x_{0}, y_{0}, z_{0}\right) d y+f_{z}\left(x_{0}, y_{0}, z_{0}\right) d z=$
$\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot<d x, d y, d z>$

